Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Atmospheric Chemistry and Physics ; 22(17):11203-11215, 2022.
Article in English | ProQuest Central | ID: covidwho-2025099

ABSTRACT

We use satellite methane observations from the Tropospheric Monitoring Instrument (TROPOMI), for May 2018 to February 2020, to quantify methane emissions from individual oil and natural gas (O/G) basins in the US and Canada using a high-resolution (∼25 km) atmospheric inverse analysis. Our satellite-derived emission estimates show good consistency with in situ field measurements (R=0.96) in 14 O/G basins distributed across the US and Canada. Aggregating our results to the national scale, we obtain O/G-related methane emission estimates of12.6±2.1 Tg a-1 for the US and 2.2±0.6 Tg a-1 for Canada, 80 % and 40 %, respectively, higher than the national inventories reported to the United Nations. About 70 % of the discrepancy in the US Environmental Protection Agency (EPA) inventory can be attributed to five O/G basins, the Permian, Haynesville, Anadarko, Eagle Ford, and Barnett basins, which in total account for 40 % of US emissions. We show more generally that our TROPOMI inversion framework can quantify methane emissions exceeding 0.2–0.5 Tg a-1 from individual O/G basins, thus providing an effective tool for monitoring methane emissions from large O/G basins globally.

2.
Atmospheric Chemistry and Physics ; 21(9):6605-6626, 2021.
Article in English | ProQuest Central | ID: covidwho-1212058

ABSTRACT

Methane emissions associated with the production, transport, and use of oil and natural gas increase the climatic impacts of energy use;however, little is known about how emissions vary temporally and with commodity prices. We present airborne and ground-based data, supported by satellite observations, to measure weekly to monthly changes in total methane emissions in the United States' Permian Basin during a period of volatile oil prices associated with the COVID-19 pandemic. As oil prices declined from ∼ USD 60 to USD 20 per barrel, emissions changed concurrently from 3.3 % to 1.9 % of natural gas production;as prices partially recovered, emissions increased back to near initial values. Concurrently, total oil and natural gas production only declined by∼ 10 % from the peak values seen in the months prior to the crash. Activity data indicate that a rapid decline in well development and subsequent effects on associated gas flaring and midstream infrastructure throughput are the likely drivers of temporary emission reductions. Our results, along with past satellite observations, suggest that under more typical price conditions, the Permian Basin is in a state of overcapacity in which rapidly growing associated gas production exceeds midstream capacity and leads to high methane emissions.

SELECTION OF CITATIONS
SEARCH DETAIL